Commit 1a95ab99 authored by Po-Yen, Chen's avatar Po-Yen, Chen
Browse files

Introduce ck::accumulate_n()

We can use this template to eliminate duplicated iterator computing
logics. By providing return type to ck::accumulate_n(), we can avoid
type conversion operations.
parent 7acbf104
Showing with 129 additions and 180 deletions
+129 -180
......@@ -12,6 +12,7 @@
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction_bilinear.hpp"
#include "ck/library/utility/numeric.hpp"
using F32 = float;
......@@ -192,20 +193,14 @@ int main(int argc, char* argv[])
{
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
ck::index_t M = std::accumulate(e_ms_ns_lengths.begin(),
e_ms_ns_lengths.begin() + NumDimM,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t M = ck::accumulate_n<ck::index_t>(
e_ms_ns_lengths.begin(), NumDimM, 1, std::multiplies<>{});
ck::index_t N = std::accumulate(e_ms_ns_lengths.begin() + NumDimM,
e_ms_ns_lengths.begin() + NumDimM + NumDimN,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t N = ck::accumulate_n<ck::index_t>(
e_ms_ns_lengths.begin() + NumDimM, NumDimN, 1, std::multiplies<>{});
ck::index_t K = std::accumulate(a_ms_ks_lengths.begin() + NumDimM,
a_ms_ks_lengths.begin() + NumDimM + NumDimK,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t K = ck::accumulate_n<ck::index_t>(
a_ms_ks_lengths.begin() + NumDimM, NumDimK, 1, std::multiplies<>{});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
......
......@@ -12,6 +12,7 @@
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction_scale.hpp"
#include "ck/library/utility/numeric.hpp"
using F32 = float;
......@@ -178,20 +179,14 @@ int main(int argc, char* argv[])
{
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
ck::index_t M = std::accumulate(e_ms_ns_lengths.begin(),
e_ms_ns_lengths.begin() + NumDimM,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t M = ck::accumulate_n<ck::index_t>(
e_ms_ns_lengths.begin(), NumDimM, 1, std::multiplies<>{});
ck::index_t N = std::accumulate(e_ms_ns_lengths.begin() + NumDimM,
e_ms_ns_lengths.begin() + NumDimM + NumDimN,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t N = ck::accumulate_n<ck::index_t>(
e_ms_ns_lengths.begin() + NumDimM, NumDimN, 1, std::multiplies<>{});
ck::index_t K = std::accumulate(a_ms_ks_lengths.begin() + NumDimM,
a_ms_ks_lengths.begin() + NumDimM + NumDimK,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t K = ck::accumulate_n<ck::index_t>(
a_ms_ks_lengths.begin() + NumDimM, NumDimK, 1, std::multiplies<>{});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
......
......@@ -15,6 +15,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/numeric.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
......@@ -327,20 +328,14 @@ int main(int argc, char* argv[])
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t M = std::accumulate(e_gs_ms_ns_lengths.begin() + NumDimG,
e_gs_ms_ns_lengths.begin() + NumDimG + NumDimM,
ck::index_t{1},
std::multiplies<ck::index_t>{});
std::size_t M = ck::accumulate_n<ck::index_t>(
e_gs_ms_ns_lengths.begin() + NumDimG, NumDimM, 1, std::multiplies<>{});
std::size_t N = std::accumulate(e_gs_ms_ns_lengths.begin() + NumDimG + NumDimM,
e_gs_ms_ns_lengths.begin() + NumDimG + NumDimM + NumDimN,
ck::index_t{1},
std::multiplies<ck::index_t>{});
std::size_t N = ck::accumulate_n<ck::index_t>(
e_gs_ms_ns_lengths.begin() + NumDimG + NumDimM, NumDimN, 1, std::multiplies<>{});
std::size_t K = std::accumulate(a_gs_ms_ks_lengths.begin() + NumDimG + NumDimM,
a_gs_ms_ks_lengths.begin() + NumDimG + NumDimM + NumDimK,
ck::index_t{1},
std::multiplies<ck::index_t>{});
std::size_t K = ck::accumulate_n<ck::index_t>(
a_gs_ms_ks_lengths.begin() + NumDimG + NumDimM, NumDimK, 1, std::multiplies<>{});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
......
......@@ -15,6 +15,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/numeric.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
......@@ -327,20 +328,14 @@ int main(int argc, char* argv[])
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
ck::index_t M = std::accumulate(e_gs_ms_ns_lengths.begin(),
e_gs_ms_ns_lengths.begin() + NumDimM,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t M =
ck::accumulate_n<ck::index_t>(e_gs_ms_ns_lengths.begin(), NumDimM, 1, std::multiplies<>{});
ck::index_t N = std::accumulate(e_gs_ms_ns_lengths.begin() + NumDimM,
e_gs_ms_ns_lengths.begin() + NumDimM + NumDimN,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t N = ck::accumulate_n<ck::index_t>(
e_gs_ms_ns_lengths.begin() + NumDimM, NumDimN, 1, std::multiplies<>{});
ck::index_t K = std::accumulate(a_gs_ms_ks_lengths.begin() + NumDimM,
a_gs_ms_ks_lengths.begin() + NumDimM + NumDimK,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t K = ck::accumulate_n<ck::index_t>(
a_gs_ms_ks_lengths.begin() + NumDimM, NumDimK, 1, std::multiplies<>{});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
......
......@@ -15,6 +15,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/numeric.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
......@@ -368,20 +369,14 @@ int main(int argc, char* argv[])
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
ck::index_t M = std::accumulate(e_ms_ns_lengths.begin(),
e_ms_ns_lengths.begin() + NumDimM,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t M =
ck::accumulate_n<ck::index_t>(e_ms_ns_lengths.begin(), NumDimM, 1, std::multiplies<>{});
ck::index_t N = std::accumulate(e_ms_ns_lengths.begin() + NumDimM,
e_ms_ns_lengths.begin() + NumDimM + NumDimN,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t N = ck::accumulate_n<ck::index_t>(
e_ms_ns_lengths.begin() + NumDimM, NumDimN, 1, std::multiplies<>{});
ck::index_t K = std::accumulate(a_ms_ks_lengths.begin() + NumDimM,
a_ms_ks_lengths.begin() + NumDimM + NumDimK,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t K = ck::accumulate_n<ck::index_t>(
a_ms_ks_lengths.begin() + NumDimM, NumDimK, 1, std::multiplies<>{});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
......
......@@ -15,6 +15,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/numeric.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
......@@ -349,20 +350,14 @@ int main(int argc, char* argv[])
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
ck::index_t M = std::accumulate(e_ms_ns_lengths.begin(),
e_ms_ns_lengths.begin() + NumDimM,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t M =
ck::accumulate_n<ck::index_t>(e_ms_ns_lengths.begin(), NumDimM, 1, std::multiplies<>{});
ck::index_t N = std::accumulate(e_ms_ns_lengths.begin() + NumDimM,
e_ms_ns_lengths.begin() + NumDimM + NumDimN,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t N = ck::accumulate_n<ck::index_t>(
e_ms_ns_lengths.begin() + NumDimM, NumDimN, 1, std::multiplies<>{});
ck::index_t K = std::accumulate(a_ms_ks_lengths.begin() + NumDimM,
a_ms_ks_lengths.begin() + NumDimM + NumDimK,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t K = ck::accumulate_n<ck::index_t>(
a_ms_ks_lengths.begin() + NumDimM, NumDimK, 1, std::multiplies<>{});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
......
......@@ -16,6 +16,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/numeric.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
......@@ -310,20 +311,14 @@ int main(int argc, char* argv[])
std::vector<std::size_t>(e_ms_ns_lengths.begin(), e_ms_ns_lengths.end()),
std::vector<std::size_t>(e_ms_ns_strides.begin(), e_ms_ns_strides.end()));
ck::index_t M_ = std::accumulate(e_ms_ns_lengths.begin(),
e_ms_ns_lengths.begin() + NumDimM,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t M_ =
ck::accumulate_n<ck::index_t>(e_ms_ns_lengths.begin(), NumDimM, 1, std::multiplies<>{});
ck::index_t N_ = std::accumulate(e_ms_ns_lengths.begin() + NumDimM,
e_ms_ns_lengths.begin() + NumDimM + NumDimN,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t N_ = ck::accumulate_n<ck::index_t>(
e_ms_ns_lengths.begin() + NumDimM, NumDimN, 1, std::multiplies<>{});
ck::index_t K_ = std::accumulate(a_ms_ks_lengths.begin() + NumDimM,
a_ms_ks_lengths.begin() + NumDimM + NumDimK,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t K_ = ck::accumulate_n<ck::index_t>(
a_ms_ks_lengths.begin() + NumDimM, NumDimK, 1, std::multiplies<>{});
a_tensors.push_back(a_ms_ks);
b_tensors.push_back(b_ns_ks);
......
......@@ -15,6 +15,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/numeric.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
......@@ -327,25 +328,17 @@ int main(int argc, char* argv[])
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
ck::index_t G = std::accumulate(e_gs_ms_ns_lengths.begin(),
e_gs_ms_ns_lengths.begin() + NumDimG,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t M = std::accumulate(e_gs_ms_ns_lengths.begin() + NumDimG,
e_gs_ms_ns_lengths.begin() + NumDimG + NumDimM,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t N = std::accumulate(e_gs_ms_ns_lengths.begin() + NumDimG + NumDimM,
e_gs_ms_ns_lengths.begin() + NumDimG + NumDimM + NumDimN,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t K = std::accumulate(a_gs_ms_ks_lengths.begin() + NumDimG + NumDimM,
a_gs_ms_ks_lengths.begin() + NumDimG + NumDimM + NumDimK,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t G =
ck::accumulate_n<ck::index_t>(e_gs_ms_ns_lengths.begin(), NumDimG, 1, std::multiplies<>{});
ck::index_t M = ck::accumulate_n<ck::index_t>(
e_gs_ms_ns_lengths.begin() + NumDimG, NumDimM, 1, std::multiplies<>{});
ck::index_t N = ck::accumulate_n<ck::index_t>(
e_gs_ms_ns_lengths.begin() + NumDimG + NumDimM, NumDimN, 1, std::multiplies<>{});
ck::index_t K = ck::accumulate_n<ck::index_t>(
a_gs_ms_ks_lengths.begin() + NumDimG + NumDimM, NumDimK, 1, std::multiplies<>{});
std::size_t flop = std::size_t(2) * G * M * N * K;
std::size_t num_btype = sizeof(ADataType) * G * M * K + sizeof(BDataType) * G * K * N +
......
......@@ -120,18 +120,14 @@ bool run_grouped_conv_conv_fwd(bool do_verification,
const ck::index_t gemm_batch = a0_g_n_c_wis_lengths[0];
const ck::index_t gemm0_m_length =
e1_g_n_k_wos_lengths[1] * std::accumulate(e1_g_n_k_wos_lengths.begin() + 3,
e1_g_n_k_wos_lengths.begin() + 3 + NDimSpatial,
ck::index_t{1},
std::multiplies<ck::index_t>{});
e1_g_n_k_wos_lengths[1] *
ck::accumulate_n<ck::index_t>(
e1_g_n_k_wos_lengths.begin() + 3, NDimSpatial, 1, std::multiplies<>{});
const ck::index_t gemm0_n_length = b0_g_k_c_xs_lengths[1];
const ck::index_t gemm0_k_length =
std::accumulate(b0_g_k_c_xs_lengths.begin() + 2,
b0_g_k_c_xs_lengths.begin() + 2 + NDimSpatial + 1,
ck::index_t{1},
std::multiplies<ck::index_t>{});
const ck::index_t gemm0_k_length = ck::accumulate_n<ck::index_t>(
b0_g_k_c_xs_lengths.begin() + 2, NDimSpatial + 1, 1, std::multiplies<>{});
const ck::index_t gemm1_n_length = b1_g_k_c_xs_lengths[1];
......
......@@ -22,6 +22,7 @@
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/io.hpp"
#include "ck/library/utility/numeric.hpp"
namespace ck {
namespace tensor_operation {
......@@ -410,10 +411,9 @@ struct DeviceGroupedConvFwdMultipleDMultipleR_Xdl_CShuffle
{
const index_t N = r_g_n_wos_lengths[1];
const index_t NHoWo = N * std::accumulate(r_g_n_wos_lengths.begin() + 2,
r_g_n_wos_lengths.begin() + 2 + NDimSpatial,
index_t{1},
std::multiplies<index_t>());
const index_t NHoWo =
N * ck::accumulate_n<index_t>(
r_g_n_wos_lengths.begin() + 2, NDimSpatial, 1, std::multiplies<>());
const auto r_grid_desc_mraw = make_naive_tensor_descriptor_packed(make_tuple(NHoWo));
......@@ -435,10 +435,9 @@ struct DeviceGroupedConvFwdMultipleDMultipleR_Xdl_CShuffle
const index_t WoStride = r_g_n_wos_strides[NDimSpatial + 2];
const index_t NHoWo = N * std::accumulate(r_g_n_wos_lengths.begin() + 2,
r_g_n_wos_lengths.begin() + 2 + NDimSpatial,
index_t{1},
std::multiplies<index_t>());
const index_t NHoWo =
N * ck::accumulate_n<index_t>(
r_g_n_wos_lengths.begin() + 2, NDimSpatial, 1, std::multiplies<>());
const auto r_grid_desc_mraw =
make_naive_tensor_descriptor(make_tuple(NHoWo), make_tuple(WoStride));
......
......@@ -4,6 +4,7 @@
#pragma once
#include "ck/library/utility/numeric.hpp"
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
......@@ -47,10 +48,9 @@ struct TransformConvFwdToGemm
if constexpr(ConvForwardSpecialization ==
device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{
const index_t NWo = N * std::accumulate(c_g_n_k_wos_lengths.begin() + 3,
c_g_n_k_wos_lengths.begin() + 3 + NDimSpatial,
index_t{1},
std::multiplies<index_t>());
const index_t NWo =
N * ck::accumulate_n<index_t>(
c_g_n_k_wos_lengths.begin() + 3, NDimSpatial, 1, std::multiplies<>());
const auto in_gemmm_gemmk_desc =
make_naive_tensor_descriptor_packed(make_tuple(NWo, C));
......@@ -146,10 +146,9 @@ struct TransformConvFwdToGemm
if constexpr(ConvForwardSpecialization ==
device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{
const index_t NHoWo = N * std::accumulate(c_g_n_k_wos_lengths.begin() + 3,
c_g_n_k_wos_lengths.begin() + 3 + NDimSpatial,
index_t{1},
std::multiplies<index_t>());
const index_t NHoWo =
N * ck::accumulate_n<index_t>(
c_g_n_k_wos_lengths.begin() + 3, NDimSpatial, 1, std::multiplies<>());
const auto in_gemmm_gemmk_desc =
make_naive_tensor_descriptor_packed(make_tuple(NHoWo, C));
......@@ -262,10 +261,8 @@ struct TransformConvFwdToGemm
device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{
const index_t NDoHoWo =
N * std::accumulate(c_g_n_k_wos_lengths.begin() + 3,
c_g_n_k_wos_lengths.begin() + 3 + NDimSpatial,
index_t{1},
std::multiplies<index_t>());
N * ck::accumulate_n<index_t>(
c_g_n_k_wos_lengths.begin() + 3, NDimSpatial, 1, std::multiplies<>());
const auto in_gemmm_gemmk_desc =
make_naive_tensor_descriptor_packed(make_tuple(NDoHoWo, C));
......@@ -390,10 +387,9 @@ struct TransformConvFwdToGemm
if constexpr(ConvForwardSpecialization ==
device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{
const index_t NHoWo = N * std::accumulate(c_g_n_k_wos_lengths.begin() + 3,
c_g_n_k_wos_lengths.begin() + 3 + NDimSpatial,
index_t{1},
std::multiplies<index_t>());
const index_t NHoWo =
N * ck::accumulate_n<index_t>(
c_g_n_k_wos_lengths.begin() + 3, NDimSpatial, 1, std::multiplies<>());
// This is different
const index_t WiStride = a_g_n_c_wis_strides[2 + NDimSpatial];
......@@ -506,10 +502,9 @@ struct TransformConvFwdToGemm
if constexpr(ConvForwardSpecialization ==
device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{
const index_t NHoWo = N * std::accumulate(c_g_n_k_wos_lengths.begin() + 3,
c_g_n_k_wos_lengths.begin() + 3 + NDimSpatial,
index_t{1},
std::multiplies<index_t>());
const index_t NHoWo =
N * ck::accumulate_n<index_t>(
c_g_n_k_wos_lengths.begin() + 3, NDimSpatial, 1, std::multiplies<>());
// This is different
const index_t WiStride = a_g_n_c_wis_strides[2 + NDimSpatial];
......@@ -639,10 +634,8 @@ struct TransformConvFwdToGemm
device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{
const index_t NDoHoWo =
N * std::accumulate(c_g_n_k_wos_lengths.begin() + 3,
c_g_n_k_wos_lengths.begin() + 3 + NDimSpatial,
index_t{1},
std::multiplies<index_t>());
N * ck::accumulate_n<index_t>(
c_g_n_k_wos_lengths.begin() + 3, NDimSpatial, 1, std::multiplies<>());
// This is different
const index_t WiStride = a_g_n_c_wis_strides[2 + NDimSpatial];
......@@ -768,10 +761,8 @@ struct TransformConvFwdToGemm
const index_t K = b_g_k_c_xs_lengths[1];
const index_t C = b_g_k_c_xs_lengths[2];
const index_t YX = std::accumulate(b_g_k_c_xs_lengths.begin() + 3,
b_g_k_c_xs_lengths.begin() + 3 + NDimSpatial,
index_t{1},
std::multiplies<index_t>());
const index_t YX = ck::accumulate_n<index_t>(
b_g_k_c_xs_lengths.begin() + 3, NDimSpatial, 1, std::multiplies<>());
const auto wei_gemmn_gemmk_desc =
make_naive_tensor_descriptor_packed(make_tuple(K, YX * C));
......@@ -794,10 +785,8 @@ struct TransformConvFwdToGemm
const index_t K = b_g_k_c_xs_lengths[1];
const index_t C = b_g_k_c_xs_lengths[2];
const index_t YX = std::accumulate(b_g_k_c_xs_lengths.begin() + 3,
b_g_k_c_xs_lengths.begin() + 3 + NDimSpatial,
index_t{1},
std::multiplies<index_t>());
const index_t YX = ck::accumulate_n<index_t>(
b_g_k_c_xs_lengths.begin() + 3, NDimSpatial, 1, std::multiplies<>());
const index_t KStride = b_g_k_c_xs_strides[1];
const index_t XStride = b_g_k_c_xs_strides[2 + NDimSpatial];
......@@ -827,10 +816,9 @@ struct TransformConvFwdToGemm
const index_t N = c_g_n_k_wos_lengths[1];
const index_t K = c_g_n_k_wos_lengths[2];
const index_t NHoWo = N * std::accumulate(c_g_n_k_wos_lengths.begin() + 3,
c_g_n_k_wos_lengths.begin() + 3 + NDimSpatial,
index_t{1},
std::multiplies<index_t>());
const index_t NHoWo =
N * ck::accumulate_n<index_t>(
c_g_n_k_wos_lengths.begin() + 3, NDimSpatial, 1, std::multiplies<>());
const auto out_gemmm_gemmn_desc = make_naive_tensor_descriptor_packed(make_tuple(NHoWo, K));
......@@ -855,10 +843,9 @@ struct TransformConvFwdToGemm
const auto KStride = I1;
const index_t WoStride = c_g_n_k_wos_strides[NDimSpatial + 2];
const index_t NHoWo = N * std::accumulate(c_g_n_k_wos_lengths.begin() + 3,
c_g_n_k_wos_lengths.begin() + 3 + NDimSpatial,
index_t{1},
std::multiplies<index_t>());
const index_t NHoWo =
N * ck::accumulate_n<index_t>(
c_g_n_k_wos_lengths.begin() + 3, NDimSpatial, 1, std::multiplies<>());
const auto out_gemmm_gemmn_desc =
make_naive_tensor_descriptor(make_tuple(NHoWo, K), make_tuple(WoStride, KStride));
......@@ -878,10 +865,9 @@ struct TransformConvFwdToGemm
const index_t N = c_g_n_k_wos_lengths[1];
const index_t K = c_g_n_k_wos_lengths[2];
const index_t NHoWo = N * std::accumulate(c_g_n_k_wos_lengths.begin() + 3,
c_g_n_k_wos_lengths.begin() + 3 + NDimSpatial,
index_t{1},
std::multiplies<index_t>());
const index_t NHoWo =
N * ck::accumulate_n<index_t>(
c_g_n_k_wos_lengths.begin() + 3, NDimSpatial, 1, std::multiplies<>());
const auto out_gemmm_gemmn_desc =
make_naive_tensor_descriptor(make_tuple(NHoWo, K), make_tuple(I0, I1));
......
......@@ -10,6 +10,8 @@
#include "ck/ck.hpp"
#include "ck/library/utility/numeric.hpp"
namespace ck {
namespace utils {
namespace conv {
......@@ -55,10 +57,8 @@ struct ConvParam
// sizeof(InDataType) * (G * N * C * <input spatial lengths product>) +
return sizeof(InDataType) *
(G_ * N_ * C_ *
std::accumulate(std::begin(input_spatial_lengths_),
std::begin(input_spatial_lengths_) + num_dim_spatial_,
static_cast<std::size_t>(1),
std::multiplies<std::size_t>()));
ck::accumulate_n<std::size_t>(
std::begin(input_spatial_lengths_), num_dim_spatial_, 1, std::multiplies<>()));
}
template <typename WeiDataType>
......@@ -67,10 +67,8 @@ struct ConvParam
// sizeof(WeiDataType) * (G * K * C * <filter spatial lengths product>) +
return sizeof(WeiDataType) *
(G_ * K_ * C_ *
std::accumulate(std::begin(filter_spatial_lengths_),
std::begin(filter_spatial_lengths_) + num_dim_spatial_,
static_cast<std::size_t>(1),
std::multiplies<std::size_t>()));
ck::accumulate_n<std::size_t>(
std::begin(filter_spatial_lengths_), num_dim_spatial_, 1, std::multiplies<>()));
}
template <typename OutDataType>
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iterator>
#include <numeric>
namespace ck {
template <typename T, typename ForwardIterator, typename Size, typename BinaryOperation>
auto accumulate_n(ForwardIterator first, Size count, T init, BinaryOperation op)
-> decltype(std::accumulate(first, std::next(first, count), init, op))
{
return std::accumulate(first, std::next(first, count), init, op);
}
} // namespace ck
......@@ -72,14 +72,10 @@ std::size_t ConvParam::GetFlops() const
{
// 2 * G * N * K * C * <output spatial lengths product> * <filter spatial lengths product>
return static_cast<std::size_t>(2) * G_ * N_ * K_ * C_ *
std::accumulate(std::begin(output_spatial_lengths_),
std::begin(output_spatial_lengths_) + num_dim_spatial_,
static_cast<std::size_t>(1),
std::multiplies<std::size_t>()) *
std::accumulate(std::begin(filter_spatial_lengths_),
std::begin(filter_spatial_lengths_) + num_dim_spatial_,
static_cast<std::size_t>(1),
std::multiplies<std::size_t>());
ck::accumulate_n<std::size_t>(
std::begin(output_spatial_lengths_), num_dim_spatial_, 1, std::multiplies<>()) *
ck::accumulate_n<std::size_t>(
std::begin(filter_spatial_lengths_), num_dim_spatial_, 1, std::multiplies<>());
}
std::string get_conv_param_parser_helper_msg()
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment